metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{1-[(2-Morpholin-4-ylethylimino- $\kappa^2 N, N'$)methyl]naphthalen-2-olato- κO }-(thiocyanato-N)nickel(II)

Yun-Peng Diao,^a Yuan-Zhi Wang,^b Ming-Dong Wang^c and Kun Li^d*

^aSchool of Pharmacy, Dalian Medical University, Dalian 116027, People's Republic of China, ^bLiaoning Food and Drug Administration, Shenyang 110003, People's Republic of China, ^cLiaoning Food and Drug Administration Technical Evaluation Center, Shenyang 110003, People's Republic of China, and ^dCollege of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China

Correspondence e-mail: diaoyiwen@126.com

Received 21 August 2007; accepted 3 September 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.063; wR factor = 0.135; data-to-parameter ratio = 17.8.

In the title mononuclear nickel(II) complex, [Ni(C₁₇H₁₉-N₂O₂)(NCS)], the Ni^{II} atom is four-coordinated by the phenolate O, imine N and amine N atoms of one Schiff base ligand, and by the terminal N atom of a thiocyanate ligand, forming a square-planar geometry.

Related literature

For related literature, see: Arıcı et al. (2005); Brückner et al. (2000); Diao (2007a,b); Diao, Huang et al. (2007); Diao, Shu et al. (2007); Harrop et al. (2003); Li, Huang et al. (2007); Li, Jiang et al. (2007); Marganian et al. (1995); Ren et al. (2002); Usman et al. (2003); Van Hecke et al. (2007).

Experimental

Crystal data

[Ni(C₁₇H₁₉N₂O₂)(NCS)] $M_r = 400.13$ Orthorhombic, Pbca a = 12.648 (3) Å b = 12.647 (3) Å c = 21.915 (4) Å

 $V = 3505.5 (12) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 1.24 \text{ mm}^{-1}$ T = 298 (2) K $0.32 \times 0.32 \times 0.30 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	28592 measured reflections
diffractometer	4028 independent reflections
Absorption correction: multi-scan	3012 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.065$
$T_{\min} = 0.692, \ T_{\max} = 0.707$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	226 parameters
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$
4028 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ni1-O1	1.828 (2)	Ni1-N3	1.885 (3)
Ni1-N1	1.832 (3)	Ni1-N2	1.959 (3)
O1-Ni1-N1	93.38 (12)	O1-Ni1-N2	176.66 (11)
O1-Ni1-N3	87.57 (11)	N1-Ni1-N2	86.86 (12)
N1-Ni1-N3	171.51 (13)	N3-Ni1-N2	92.69 (12)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This project was financially supported by a research grant from Dalian Medical University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2382).

References

- Arıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919-m921.
- Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106.
- Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Diao, Y.-P. (2007a). Acta Cryst. E63, m1081-m1083.
- Diao, Y.-P. (2007b). Acta Cryst. E63, m1453-m1454.
- Diao, Y.-P., Huang, S.-S., Zhang, H.-L., Deng, S. & Liu, K.-X. (2007). Acta Cryst. E63, m1694.
- Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.
- Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.
- Li, J.-M., Jiang, Y.-M., Li, C.-Z. & Zhang, S.-H. (2007). Acta Cryst. E63, m447m449.
- Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63. m2291.
- Marganian, C. A., Vazir, H., Baidya, N., Olmstead, M. M. & Mascharak, P. K. (1995). J. Am. Chem. Soc. 117, 1584-1594.
- Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419
- Usman, A., Fun, H.-K., Karmakar, T. K., Ghosh, B. K. & Chandra, S. K. (2003). Acta Crvst. E59, m387-m389
- Van Hecke, K., Nockemann, P., Binnemans, K. & Van Meervelt, L. (2007). Acta Cryst. E63, m569-m571.

supplementary materials

Acta Cryst. (2007). E63, m2494 [doi:10.1107/S1600536807043073]

$\{1-[(2-Morpholin-4-ylethylimino-\kappa^2 N, N') methyl] naphthalen-2-olato-\kappa O \} (thiocyanato-N) nickel (II) \}$

Y.-P. Diao, Y.-Z. Wang, M.-D. Wang and K. Li

Comment

Nickel(II) complexes with Schiff base ligands have received much attention in recent years (Marganian *et al.*, 1995). Some of the complexes have been found to have pharmacological and antitumor properties (Harrop *et al.*, 2003; Brückner *et al.*, 2000; Ren *et al.*, 2002). Nickel is also present in the active sites of several important classes of metalloproteins, as either a homodinuclear or a heterodinuclear species. We have recently reported a few transition metal complexes (Diao, 2007*a*,b; Diao, Huang *et al.*, 2007; Diao, Shu *et al.*, 2007; Li, Huang *et al.*, 2007). In order to further develop the coordination chemistry of such nickel complexes, we report herein the title new nickel(II) compound.

The Ni^{II} atom in the mononuclear complex is four-coordinate in a square-planar geometry with one phenolate O, one imine N, and one amine N atoms of one Schiff base ligand and one terminal N atom of a thiocyanate ligand (Fig. 1). All the bond values (Table 1) subtended at the metal centre are comparable with the values observed in other Schiff base nickel(II) complexes (Arici *et al.*, 2005; Usman *et al.*, 2003; Van Hecke *et al.*, 2007; Li, Jiang *et al.*, 2007).

Experimental

2-Hydroxy-1-naphthaldehyde (0.1 mmol, 17.0 mg), 2-morpholin-4-ylethylamine (0.1 mmol, 13.0 mg), ammonium thiocyanate (0.1 mmol, 7.5 mg), and Ni(NO₃)₂·6H₂O (0.1 mmol, 29.0 mg) were dissolved in a methanol solution (10 ml). The mixture was stirred at room temperature for 30 min to give a red solution. After keeping the solution in air for 8 days, red block-like crystals were formed.

Refinement

H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The structure of the title complex with 30% probability level.

$\{1-[(2-Morpholin-4-ylethylimino-\kappa^2 N, N']$ methyl]naphthalen-2-olato- $\kappa O\}$ (thiocyanato-N)nickel(II)

 $F_{000} = 1664$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.4 - 25.0^{\circ}$

 $\mu = 1.24 \text{ mm}^{-1}$

T = 298 (2) K

 $0.32 \times 0.32 \times 0.30 \text{ mm}$

Block, red

 $D_{\rm x} = 1.516 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 3770 reflections

Crystal data

[Ni(C₁₇H₁₉N₂O₂)(NCS)] $M_r = 400.13$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 12.648 (3) Å b = 12.647 (3) Å c = 21.915 (4) Å V = 3505.5 (12) Å³ Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer	4028 independent reflections
Radiation source: fine-focus sealed tube	3012 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.065$
T = 298(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -16 \rightarrow 16$
$T_{\min} = 0.692, T_{\max} = 0.707$	$k = -16 \rightarrow 16$
28592 measured reflections	$l = -28 \rightarrow 28$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H-atom parameters constrained
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.0577P)^2 + 0.5788P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.16	$(\Delta/\sigma)_{\rm max} < 0.001$
4028 reflections	$\Delta \rho_{max} = 0.67 \text{ e } \text{\AA}^{-3}$
226 parameters	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Faction stient as marshine a serie

Primary atom site location: structure-invariant direct E methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ni1	0.10083 (3)	0.38201 (3)	0.331471 (19)	0.03927 (16)
S1	-0.00187 (9)	0.45522 (8)	0.13251 (5)	0.0641 (3)
01	0.02168 (18)	0.49703 (19)	0.35297 (11)	0.0469 (6)
O2	0.2686 (2)	0.1258 (2)	0.21262 (13)	0.0623 (7)
N1	0.1692 (2)	0.3770 (2)	0.40509 (13)	0.0442 (7)
N2	0.17885 (19)	0.2534 (2)	0.30999 (12)	0.0393 (6)
N3	0.0480 (3)	0.3984 (2)	0.25161 (14)	0.0513 (7)
C1	0.1016 (2)	0.5384 (3)	0.44931 (15)	0.0408 (8)
C2	0.0287 (3)	0.5548 (3)	0.40201 (16)	0.0436 (8)
C3	-0.0427 (3)	0.6417 (3)	0.40643 (17)	0.0517 (9)
Н3	-0.0959	0.6494	0.3775	0.062*
C4	-0.0344 (3)	0.7124 (3)	0.45163 (18)	0.0544 (10)
H4	-0.0813	0.7690	0.4528	0.065*
C5	0.0436 (3)	0.7039 (3)	0.49775 (18)	0.0513 (9)
C6	0.0570 (4)	0.7847 (4)	0.5416 (2)	0.0680 (12)
H6	0.0126	0.8433	0.5407	0.082*
C7	0.1325 (4)	0.7786 (4)	0.5847 (2)	0.0785 (14)
H7	0.1422	0.8338	0.6122	0.094*
C8	0.1962 (4)	0.6884 (4)	0.5877 (2)	0.0780 (14)
H8	0.2462	0.6826	0.6187	0.094*
C9	0.1860 (3)	0.6079 (3)	0.54553 (17)	0.0615 (11)
Н9	0.2294	0.5487	0.5483	0.074*
C10	0.1111 (3)	0.6147 (3)	0.49864 (17)	0.0475 (9)
C11	0.1660 (3)	0.4476 (3)	0.44838 (16)	0.0467 (8)
H11	0.2103	0.4370	0.4817	0.056*
C12	0.2429 (3)	0.2881 (3)	0.41236 (17)	0.0585 (10)
H12A	0.2412	0.2621	0.4540	0.070*
H12B	0.3145	0.3104	0.4030	0.070*
C13	0.2089 (3)	0.2043 (3)	0.36966 (17)	0.0549 (10)
H13A	0.1489	0.1665	0.3865	0.066*
H13B	0.2660	0.1542	0.3635	0.066*
C14	0.2734 (3)	0.2859 (3)	0.27331 (17)	0.0493 (9)
H14A	0.3200	0.3279	0.2988	0.059*
H14B	0.2504	0.3300	0.2396	0.059*
C15	0.3346 (3)	0.1926 (3)	0.24830 (19)	0.0617 (11)
H15A	0.3926	0.2181	0.2234	0.074*
H15B	0.3642	0.1523	0.2819	0.074*
C16	0 1853 (3)	0.0866 (3)	0.24931 (19)	0.0565 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H16A	0.2145	0.0476	0.283	35	0.068*	
H16B	0.1422	0.0384	0.225	55	0.068*	
C17	0.1176 (2)	0.1755 (3)	0.272	276 (18)	0.0465 (9)	
H17A	0.0856	0.2119	0.238	34	0.056*	
H17B	0.0611	0.1464	0.297	75	0.056*	
C18	0.0284 (3)	0.4230 (3)	0.201	196 (17)	0.0430 (8)	
Atomic disp	placement parameters	$s(A^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Ni1	0.0335 (2)	0.0431 (3)	0.0412 (3)	0.00581 (1	18) -0.00355 (18)	0.00764 (19)
S1	0.0890 (8)	0.0573 (6)	0.0461 (6)	0.0087 (6)	-0.0121 (5)	0.0034 (5)
01	0.0439 (13)	0.0504 (14)	0.0465 (14)	0.0116 (11) -0.0066 (11)	0.0027 (11)
O2	0.0501 (15)	0.0656 (18)	0.0712 (19)	0.0054 (14	4) 0.0113 (14)	-0.0084 (14)
N1	0.0367 (15)	0.0514 (17)	0.0446 (16)	0.0023 (13	3) -0.0017 (13)	0.0118 (14)
N2	0.0274 (13)	0.0441 (15)	0.0465 (16)	0.0031 (12	2) 0.0006 (12)	0.0077 (12)
N3	0.0552 (19)	0.0501 (18)	0.0487 (18)	0.0145 (15	5) -0.0099 (15)	0.0016 (14)
C1	0.0363 (17)	0.0443 (19)	0.0417 (18)	-0.0075 (15) 0.0050 (15)	0.0078 (15)
C2	0.0400 (18)	0.045 (2)	0.045 (2)	-0.0005 (15) 0.0063 (15)	0.0062 (16)
C3	0.047 (2)	0.058 (2)	0.050(2)	0.0087 (18	3) 0.0027 (17)	0.0069 (18)
C4	0.054 (2)	0.049 (2)	0.060 (2)	0.0030 (18	3) 0.016 (2)	0.0007 (19)
C5	0.049 (2)	0.051 (2)	0.054 (2)	-0.0148 (18) 0.0178 (18)	-0.0001 (18)
C6	0.064 (3)	0.070 (3)	0.069 (3)	-0.015 (2)	0.019 (2)	-0.018 (2)
C7	0.082 (3)	0.087 (3)	0.066 (3)	-0.026 (3)	0.015 (3)	-0.022 (3)
C8	0.066 (3)	0.107 (4)	0.061 (3)	-0.027 (3)	-0.002 (2)	-0.009 (3)
C9	0.053 (2)	0.077 (3)	0.055 (2)	-0.015 (2)	0.0034 (19)	-0.001 (2)
C10	0.0417 (19)	0.057 (2)	0.0439 (19)	-0.0160 (0.0093 (16)	0.0058 (17)
C11	0.0385 (19)	0.060 (2)	0.0421 (19)	-0.0090 (17) -0.0025 (15)	0.0122 (17)
C12	0.054 (2)	0.068 (2)	0.054 (2)	0.022 (2)	-0.0087 (19)	0.011 (2)
C13	0.054 (2)	0.056 (2)	0.054 (2)	0.0185 (18	3) -0.0025 (18)	0.0146 (19)
C14	0.0321 (17)	0.053 (2)	0.063 (2)	-0.0059 (16) -0.0003 (16)	0.0034 (18)
C15	0.0330 (19)	0.077 (3)	0.075 (3)	0.0027 (18	3) 0.0057 (19)	0.002 (2)
C16	0.054 (2)	0.043 (2)	0.072 (3)	0.0026 (18	3) -0.003 (2)	0.0028 (19)
C17	0.0309 (17)	0.044 (2)	0.065 (2)	0.0000 (15	5) 0.0008 (16)	0.0087 (17)
C18	0.0428 (18)	0.0341 (17)	0.052 (2)	0.0083 (15	5) -0.0041 (17)	-0.0044 (16)

Geometric parameters (Å, °)

Ni1—O1	1.828 (2)	C6—C7	1.345 (6)
Ni1—N1	1.832 (3)	С6—Н6	0.9300
Ni1—N3	1.885 (3)	C7—C8	1.398 (7)
Ni1—N2	1.959 (3)	С7—Н7	0.9300
S1-C18	1.621 (4)	C8—C9	1.382 (6)
O1—C2	1.302 (4)	С8—Н8	0.9300
O2—C16	1.416 (4)	C9—C10	1.401 (5)
O2—C15	1.421 (5)	С9—Н9	0.9300
N1-C11	1.303 (4)	C11—H11	0.9300
N1-C12	1.470 (4)	C12—C13	1.478 (5)
N2—C17	1.496 (4)	C12—H12A	0.9700

N2—C13	1.497 (4)	C12—H12B	0.9700
N2—C14	1.498 (4)	C13—H13A	0.9700
N3—C18	1.158 (4)	C13—H13B	0.9700
C1—C2	1.403 (5)	C14—C15	1.514 (5)
C1—C11	1.407 (5)	C14—H14A	0.9700
C1—C10	1.454 (5)	C14—H14B	0.9700
C2—C3	1.426 (5)	C15—H15A	0.9700
C3—C4	1.339 (5)	C15—H15B	0.9700
С3—Н3	0.9300	C16—C17	1.504 (5)
C4—C5	1.416 (5)	C16—H16A	0.9700
C4—H4	0.9300	C16—H16B	0.9700
C5—C6	1.413 (5)	C17—H17A	0.9700
C5—C10	1.415 (5)	C17—H17B	0.9700
01—Ni1—N1	93.38 (12)	С10—С9—Н9	119.7
O1—Ni1—N3	87.57 (11)	C9—C10—C5	117.8 (4)
N1—Ni1—N3	171.51 (13)	C9—C10—C1	124.1 (4)
O1—Ni1—N2	176.66 (11)	C5-C10-C1	118.0 (3)
N1—Ni1—N2	86.86 (12)	N1—C11—C1	125.9 (3)
N3—Ni1—N2	92.69 (12)	N1—C11—H11	117.0
C2—O1—Ni1	128.4 (2)	C1—C11—H11	117.0
C16—O2—C15	109.4 (3)	N1—C12—C13	107.2 (3)
C11—N1—C12	117.7 (3)	N1—C12—H12A	110.3
C11—N1—Ni1	127.1 (2)	C13—C12—H12A	110.3
C12—N1—Ni1	114.9 (2)	N1—C12—H12B	110.3
C17—N2—C13	109.5 (3)	C13—C12—H12B	110.3
C17—N2—C14	107.5 (3)	H12A—C12—H12B	108.5
C13—N2—C14	112.3 (3)	C12—C13—N2	109.2 (3)
C17—N2—Ni1	114.65 (18)	C12—C13—H13A	109.8
C13—N2—Ni1	105.2 (2)	N2—C13—H13A	109.8
C14—N2—Ni1	107.7 (2)	С12—С13—Н13В	109.8
C18—N3—Ni1	167.9 (3)	N2—C13—H13B	109.8
C2-C1-C11	119.4 (3)	H13A—C13—H13B	108.3
C2-C1-C10	120.3 (3)	N2-C14-C15	112.9 (3)
C11—C1—C10	120.3 (3)	N2	109.0
O1—C2—C1	124.9 (3)	C15—C14—H14A	109.0
O1—C2—C3	116.4 (3)	N2—C14—H14B	109.0
C1—C2—C3	118.7 (3)	C15-C14-H14B	109.0
C4—C3—C2	121.0 (4)	H14A—C14—H14B	107.8
С4—С3—Н3	119.5	O2—C15—C14	111.3 (3)
С2—С3—Н3	119.5	O2—C15—H15A	109.4
C3—C4—C5	122.2 (4)	C14—C15—H15A	109.4
C3—C4—H4	118.9	O2—C15—H15B	109.4
С5—С4—Н4	118.9	C14—C15—H15B	109.4
C6—C5—C4	120.9 (4)	H15A—C15—H15B	108.0
C6—C5—C10	119.7 (4)	O2—C16—C17	110.8 (3)
C4—C5—C10	119.4 (4)	O2—C16—H16A	109.5
C7—C6—C5	121.4 (5)	C17—C16—H16A	109.5
С7—С6—Н6	119.3	O2—C16—H16B	109.5
С5—С6—Н6	119.3	C17—C16—H16B	109.5

supplementary materials

C6—C7—C8	119.3 (4)	H16A—C16—H16B	108.1
С6—С7—Н7	120.3	N2—C17—C16	112.6 (3)
С8—С7—Н7	120.3	N2—C17—H17A	109.1
C9—C8—C7	121.0 (4)	С16—С17—Н17А	109.1
С9—С8—Н8	119.5	N2—C17—H17B	109.1
С7—С8—Н8	119.5	С16—С17—Н17В	109.1
C8—C9—C10	120.6 (4)	H17A—C17—H17B	107.8
С8—С9—Н9	119.7	N3—C18—S1	178.4 (4)

Fig. 1